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Complete semi–purity

Until we state otherwise, we assume that
λ is strongly inaccessible and D is a normal filter on λ

Definition 1

A forcing notion with λ–complete semi- purity is a triple
(Q,≤, ≤̄pr) such that ≤̄pr = 〈≤αpr: α < λ〉 and ≤,≤αpr are transitive
and reflexive (binary) relations on Q satisfying for each α < λ:
(a) ≤αpr ⊆ ≤,
(b) (Q,≤) is strategically (<λ)–complete and (Q,≤αpr) is

strategically (≤κ)–complete for all infinite cardinals κ < λ.

Note that unlike in Definition 17 of Part 2, in semi-purity we do
not require any kind of pure decidability.
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Auxiliary Purity Game

Assume that (Q,≤, ≤̄pr) is forcing notion with λ–complete
semi-purity. Let q̄ = 〈qα,η : α < λ & η ∈ αα〉 ⊆ Q and let p ∈ Q.

We define a game aaux
λ (p, q̄,Q,≤, ≤̄pr,D) between two players,

COM and INC as follows. A play of aaux
λ (p, q̄,Q,≤, ≤̄pr,D) lasts

λ steps during which the players choose successive terms of a
sequence 〈(rα,Aα, ηα, r ′α) : α < λ〉 so that:

(a) rα, r ′α ∈ Q, Aα ∈ D, ηα ∈ αλ and for α < β < λ:

p = r0 ≤ rα ≤ r ′α ≤ rβ and Aβ ⊆ Aα and ηα C ηβ,

(b) at a stage α of the play, first COM chooses (rα,Aα, ηα) and
then INC picks r ′α ≥ rα.
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At the end, COM wins the play 〈(rα,Aα, ηα, r ′α) : α < λ〉 if and
only if both players had always legal moves (so the play really
lasted λ steps) and
(�) if γ ∈ 4

α<λ
Aα is limit, then ηγ ∈ γγ and qγ,ηγ ≤

γ
pr rγ .

If COM has a winning strategy in aaux
λ (p, q̄,Q,≤, ≤̄pr,D) then

we say that the condition p is aux-generic over q̄,D.
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Main Purity Game

A game amain
λ (p,Q,≤, ≤̄pr,D) between two players, Generic and

Antigeneric, is defined as follows. A play of the game lasts λ
steps during which the players construct a sequence
〈p̄α, q̄α : α < λ〉. At stage α < λ of the play,

first Generic chooses a system p̄α = 〈pα,η : η ∈ αα〉 of
pairwise incompatible conditions from Q.
Then Antigeneric answers by picking a system
q̄α = 〈qα,η : η ∈ αα〉 of conditions from Q satisfying

pα,η ≤αpr qα,η for all η ∈ αα.

At the end, Generic wins the play 〈p̄α, q̄α : α < λ〉 if and only if,
letting q̄ = 〈qα,η : α < λ & η ∈ αα〉,
(�) there is an aux-generic condition p∗ ≥ p over q̄,D.
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Definition 2
A forcing notion Q is λ–semi-purely proper over the filter D if for
some sequence ≤̄pr of binary relations on Q,

(Q,≤, ≤̄pr) is a forcing with the λ–complete semi-purity and
for every p ∈ Q Generic has a winning strategy in
amain
λ (p,Q,≤, ≤̄pr,D).

Proposition 3

If a forcing notion Q is λ–semi-purely proper over D, then it is
λ–proper in the standard sense.
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Proof of the Proposition

Let ≤̄pr be a sequence witnessing the semi-pure properness of
Q. Assume N ≺ (H(χ),∈, <∗χ) satisfies

<λN ⊆ N, |N| = λ and (Q,≤, ≤̄pr),D . . . ∈ N.

Let p ∈ N ∩Q. Fix a winning strategy st ∈ N of Generic in
amain
λ (p,Q,≤, ≤̄pr,D) and pick a list 〈τ

˜
α : α < λ〉 of all Q–names

for ordinals from N.
Consider a play of amain

λ (p,Q,≤, ≤̄pr,D) in which Generic uses
st and Antigeneric chooses his answers as follows. At stage
α < λ of the play, after Generic played p̄α = 〈pα,η : η ∈ αα〉,
Antigeneric picks q̄α = 〈qα,η : η ∈ αα〉 ∈ N such that for η ∈ αα:

(∗)η pα,η ≤αpr qα,η,
(∗∗)η if β < α and there is a condition q α–purely stronger than

qα,η and forcing a value to τ
˜
β, then qα,η already forces a

value to τ
˜
β.

(Remember: (Q,≤αpr) is strategically (≤|α|)–complete)
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The play 〈p̄α, q̄α : α < λ〉 is won by Generic, so there is a
condition p∗ ≥ p which is aux-generic over
q̄ = 〈qα,η : α < λ & η ∈ αα〉 and D.

We claim that p∗ is (N,Q)–generic.

Suppose towards contradiction that p+ ≥ p∗, p+  τ
˜
β = ζ,

β < λ but ζ /∈ N. Consider a play 〈(rα,Aα, ηα, r ′α) : α < λ〉 of
aaux
λ (p∗, q̄,Q,≤, ≤̄pr,D) in which COM follows her winning

strategy and INC plays:
r ′0 = p+, and for α > 0 he lets r ′α = rα.

Let γ ∈ 4
α<λ

Aα be a limit ordinal greater than β. Since the play

was won by COM, we have ηγ ∈ γ
γ and qγ,ηγ ≤

γ
pr rγ . Since

p+ ≤ rγ , we know that rγ  τ
˜
β = ζ and hence (by (∗∗)ηγ )

qγ,ηγ  τ
˜
β = ζ. However, qγ,ηγ ∈ N, contradicting ζ /∈ N.



The play 〈p̄α, q̄α : α < λ〉 is won by Generic, so there is a
condition p∗ ≥ p which is aux-generic over
q̄ = 〈qα,η : α < λ & η ∈ αα〉 and D.

We claim that p∗ is (N,Q)–generic.

Suppose towards contradiction that p+ ≥ p∗, p+  τ
˜
β = ζ,

β < λ but ζ /∈ N. Consider a play 〈(rα,Aα, ηα, r ′α) : α < λ〉 of
aaux
λ (p∗, q̄,Q,≤, ≤̄pr,D) in which COM follows her winning

strategy and INC plays:
r ′0 = p+, and for α > 0 he lets r ′α = rα.

Let γ ∈ 4
α<λ

Aα be a limit ordinal greater than β. Since the play

was won by COM, we have ηγ ∈ γ
γ and qγ,ηγ ≤

γ
pr rγ . Since

p+ ≤ rγ , we know that rγ  τ
˜
β = ζ and hence (by (∗∗)ηγ )

qγ,ηγ  τ
˜
β = ζ. However, qγ,ηγ ∈ N, contradicting ζ /∈ N.



The play 〈p̄α, q̄α : α < λ〉 is won by Generic, so there is a
condition p∗ ≥ p which is aux-generic over
q̄ = 〈qα,η : α < λ & η ∈ αα〉 and D.

We claim that p∗ is (N,Q)–generic.

Suppose towards contradiction that p+ ≥ p∗, p+  τ
˜
β = ζ,

β < λ but ζ /∈ N. Consider a play 〈(rα,Aα, ηα, r ′α) : α < λ〉 of
aaux
λ (p∗, q̄,Q,≤, ≤̄pr,D) in which COM follows her winning

strategy and INC plays:
r ′0 = p+, and for α > 0 he lets r ′α = rα.

Let γ ∈ 4
α<λ

Aα be a limit ordinal greater than β. Since the play

was won by COM, we have ηγ ∈ γ
γ and qγ,ηγ ≤

γ
pr rγ . Since

p+ ≤ rγ , we know that rγ  τ
˜
β = ζ and hence (by (∗∗)ηγ )

qγ,ηγ  τ
˜
β = ζ. However, qγ,ηγ ∈ N, contradicting ζ /∈ N.



The iteration theorem

Theorem 4 ([RoSh:942, Thm 2.7])

Assume that λ is a strongly inaccessible cardinal and D is a
normal filter on λ. Let Q̄ = 〈Pξ,Q

˜
ξ : ξ < γ〉 be a λ–support

iteration such that for every ξ < γ:

Pξ
“ Q

˜
ξ is λ–semi-purely proper over DVPξ ”

(where DVPξ is the normal filter on λ generated in VPξ by D).

Then Pγ = lim(Q̄) is λ–proper in the standard sense.

Proof.
Somewhat like Proposition 3 plus trees of conditions plus
stuff. . .
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Proposition 5

The forcing notions Q`,Ē (for ` = 2,3,4) and their bounded
relatives Q`

ϕ,F̄ (for ` = 2,3,4) are λ–semi purely proper.

You may notice the absence of Q1,Ē
E and this may worry you if E

is the club filter on λ (as this case was not covered by part 2). It
is a strange case though.

Proposition 6 ([RoSh:942, Section 4])
Let E ,Et be club filters on λ.

1 It is consistent that Q2,Ē is a dense subset of Q1,Ē
E .

2 It is consistent that the complete Boolean algebras
RO(Q2,Ē ) and RO(Q1,Ē

E ) are not isomorphic.
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E ) are not isomorphic.



Diamonds are the best friends

For the rest of this talk we assume:
1 λ is a regular uncountable cardinal, λ<λ = λ.
2 D is a normal filter on λ.
3 A set S ∈ D+ contains all successor ordinals below λ,

0 /∈ S and λ \ S is unbounded in λ. For an ordinal γ < λ we
set S[γ] = S \ {δ ≤ γ : δ is limit }.

4 R is the closure of λ \ S and γ̄ = 〈γα : α < λ〉 is the
increasing enumeration of R (so the sequence γ̄ is
increasing continuous, γ0 = 0 and all other terms of γ̄ are
limit ordinals).

5 There exists a (D,S)–diamond, where

Definition 7

A sequence f̄ = 〈fδ : δ ∈ S〉 is a (D,S)–diamond if fδ ∈ δδ for
δ ∈ S and (∀η ∈ λλ)({δ ∈ S : fδ C η} ∈ D+).



Another purity

Definition 8

Let Q be a forcing notion. A binary relation Rpr is called a
λ–sequential purity on Q whenever r̄ Rpr r implies
(a) r̄ = 〈rα : α < δ〉 is a ≤Q–increasing sequence of conditions

from Q of limit length δ < λ, and
(b) r ∈ Q is an upper bound of r̄ (i.e., rα ≤Q r for all α < δ).

If, additionally, the relation Rpr satisfies
(c) if r̄ = 〈rα : α < δ〉 Rpr sβ for β < ξ, ξ < |δ|+ and sβ ≤ sγ for

β < γ < ξ,
then there is a condition s ∈ Q stronger than all sβ (for
β < ξ) and such that r̄ Rpr s,

then we say that Rpr is a λ–sequential+ purity on Q.



Candidates

Let (Q,≤) be a strategically (<λ)–complete forcing notion and
Rpr be a λ–sequential purity on Q.

Suppose that a model N ≺ (H(χ),∈, <∗χ) is such that |N| = λ,
<λN ⊆ N and λ,Q,D,S, . . . ∈ N

(but note we do not demand Rpr ∈ N)

and a function h : λ −→ N is such that its range Rng(h)
includes Q ∩ N. Also, let Ī = 〈Iα : α < λ〉 list all dense open
subsets of Q belonging to N and let γ < λ.



Definition 9
1 We say that a sequence f̄ = 〈fδ : δ ∈ S〉 is a (D,S,h)–semi

diamond for Q over N if fδ ∈ δδ for δ ∈ S and
(∗) for every ≤Q–increasing sequence 〈pα : α < λ〉 ⊆ Q ∩ N we

have that
{
δ ∈ S : (∀α < δ)(h(fδ(α)) = pα)

}
∈ D+.

Below, let f̄ be a (D,S,h)–semi diamond for Q over N.
2 An (N,h,Q,Rpr, f̄ , Ī)–candidate is a sequence

q̄ = 〈qδ : δ ∈ S limit 〉 of condition from N ∩Q satisfying for
each limit δ ∈ S:
(a) if h ◦ fδ = 〈h(fδ(α)) : α < δ〉 ⊆ Q ∩ N and it has an upper

bound in Q, then h(fδ(α)) ≤ qδ for all α < δ, and
(b) if, moreover, h ◦ fδ ∈ Dom(Rpr), then also h ◦ fδ Rpr qδ, and
(c) if there is q ∈

⋂
α<δ

Iα such that h ◦ fδ Rpr q, then also

qδ ∈
⋂
α<δ

Iα.



The Diamond Game

Let q̄ = 〈qδ : δ ∈ S & δ is limit 〉 be a candidate and r ∈ Q. We
define a game aSγ (r ,N,h,Q,Rpr, f̄ , q̄) of two players, Generic
and Antigeneric, as follows. A play lasts ≤ λ moves and in the
i th move the players try to choose conditions r−i , ri ∈ Q and a
set Ci ∈ D so that
(a) r ≤ ri , and r−i ∈ N, and if i /∈ S[γ] ∩R then r−i ≤ ri ,
(b) (∀i < j < λ)(ri ≤ rj & r−i ≤ r−j ), and

(c) Generic chooses r−i , ri ,Ci if i ∈ S[γ], and Antigeneric
chooses r−i , ri ,Ci if i /∈ S[γ].

At the end Generic wins the play whenever both players always
had legal moves (so the game lasted λ steps) and
(~) if δ ∈ S[γ]∩

⋂
i<δ

Ci is a limit ordinal and h ◦ fδ is an increasing

sequence of conditions in Q such that for all α < δ we have
h(fδ(α + 1)) = r−α+1, then qδ ≤ rδ and h ◦ fδ Rpr rδ.



Definition 10

We say that a strategically (<λ)–complete forcing notion Q is
purely sequentially proper over (D,S)–semi diamonds
whenever the following condition (�) is satisfied.

(�) Assume that χ is a large enough regular cardinal and
N ≺ H(χ), |N| = λ, <λN ⊆ N and λ,Q,D,S, . . . ∈ N.
Then there exists a λ–sequential purity Rpr on Q such that:
for every ordinal γ < λ, a condition p ∈ Q ∩ N and every
Ī,h, f̄ , q̄ satisfying

Ī = 〈Iα : α < λ〉 lists all open dense subsets of Q from N,
a function h : λ −→ N is such that Q ∩ N ⊆ Rng(h), and
a sequence f̄ is a (D,S,h)–semi diamond for Q, and
q̄ is an (N,h,Q,Rpr, f̄ , Ī)–candidate,

we have that Generic has a winning strategy in the game
aSγ (r ,N,h,Q,Rpr, f̄ , q̄) for some condition r ≥ p.

If the relation Rpr above can be required to be a λ–sequential+

purity, then we say that Q is purely sequentially+ proper over
(D,S)–semi diamonds.
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Ī = 〈Iα : α < λ〉 lists all open dense subsets of Q from N,
a function h : λ −→ N is such that Q ∩ N ⊆ Rng(h), and
a sequence f̄ is a (D,S,h)–semi diamond for Q, and
q̄ is an (N,h,Q,Rpr, f̄ , Ī)–candidate,
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Proposition 11
If a forcing notion Q is purely sequentially proper over
(D,S)–semi diamonds and there exists a (D,S)–diamond, then
Q is λ–proper in the standard sense.

Proof Given N and p ∈ Q ∩ N.
Let q̄ be an (N,h,Q,Rpr, f̄ , Ī)–candidate and r ≥ p be such that
Generic has a winning strategy in the game
aSγ (r ,N,h,Q,Rpr, f̄ , q̄).
Suppose that I ∈ N is an open dense subset of Q, say I = Ij0
(where Ī = 〈Ii : i < λ〉 lists all open dense subsets of Q
belonging to N). We want to argue that I ∩ N is predense
above r .
Suppose r0 ≥ r .
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Consider a play of aSγ (r ,N,h,Q,Rpr, f̄ , q̄) in which Generic
follows her winning strategy and Antigeneric plays as follows.
• At stage i = 0, Antigeneric sets C0 = λ, r−0 = ∅Q and r0 is
the one fixed above.
• At a stage i /∈ S[γ], i > 0, Antigeneric first picks any legal
move Ci , r−i , r

′
i and then “corrects” it by choosing a condition

ri ≥ r ′i so that ri ∈
⋂
j<i
Ij .

After the play is completed and a sequence 〈Ci , r−i , ri : i < λ〉 is
constructed, we know that Generic won, so:
(~) if δ ∈ S[γ]∩

⋂
i<δ

Ci is a limit ordinal and h ◦ fδ is an increasing

sequence of conditions in Q such that for all α < δ we have
h(fδ(α + 1)) = r−α+1, then qδ ≤ rδ and h ◦ fδ Rpr rδ.

Since f̄ is a (D,S,h)–semi diamond for Q over N, we know that

{δ ∈ S : (∀α < δ)(h(fδ(α)) = r−α )} ∈ D+.
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Pick a limit ordinal δ ∈ S[γ] ∩ 4
i<λ

Ci such that δ > j0, δ is a limit

of elements of λ \ S and h ◦ fδ = 〈r−α : α < δ〉. Then by (~) we
have that qδ ≤ rδ and h ◦ fδ Rpr rδ. Moreover, since rα ≤ rδ for all
α < δ and since δ is a limit of points from λ \ S we get
rδ ∈

⋂
j<δ
Ij . Therefore qδ ∈

⋂
j<δ
Ij , so in particular qδ ∈ Ij0 ∩ N.

But the condition rδ is stronger than qδ and it is also stronger
than r0, so r0 is compatible with qδ.



Example 12

The following forcing notions are purely sequentially+ proper
over (D,S)–semi diamonds:

≤ λ–strategically complete,
Q`,Ē for ` = 2,3,4,
Q`ϕ, F̄ for ` = 2,3,4 (if λ is inaccessible),
the forcing Q∗ with S ′ = λ \ S and many other.



The Iteration Theorem

Theorem 13 ([RoSh 1001, Thm 4.1])

Let Q̄ = 〈Pα,Q
˜
α : α < ζ∗〉 be a λ–support iteration such that for

each α < ζ∗

Pα “ Q
˜
α is purely sequentially+ proper

over (D,S)–semi diamonds ”.

Then
1 Pζ∗ = lim(Q̄) is purely sequentially proper over

(D,S)–semi diamonds.
2 If, additionally, for each α < ζ∗

Pα “ Q
˜
α is (<λ)–complete ”

then Pζ∗ is purely sequentially+ proper over (D,S)–semi
diamonds.



A word about the proof

The proof of the theorem does not use trees of conditions at all
(they are inconvenient for non-inaccessible case).
We play there games on more and more coordinates; at a
crucial stage we use RS–conditions:
RS–condition in Pζ∗ is a pair (p,w) such that w ∈ [(ζ∗+ 1)]<λ is
a closed set, 0, ζ∗ ∈ w , p is a function with domain
Dom(p) ⊆ ζ∗, and
(⊗) for every two successive members ε′ < ε′′ of the set w ,

p�[ε′, ε′′) is a Pε′–name of an element of Pε′′ whose
support is included in the interval [ε′, ε′′).



The end....

Thank you
for your attention during this tutorial!
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