Properness for iterations with uncountable supports

based on joint works of Andrzej Rosłanowski and Saharon Shelah

presented by AR

Department of Mathematics University of Nebraska at Omaha

Hejnice, February 2015

Part I: Background

Part II: Bounding Properties

Part III:

- **The Last Forcing Standing**
- with and without diamonds

Complete semi-purity

Until we state otherwise, we assume that λ is strongly inaccessible and *D* is a normal filter on λ

Definition 1

A forcing notion with λ-complete semi- purity is a triple (Q, ≤, ≤_{pr}) such that ≤_{pr} = ⟨≤_{pr}^α: α < λ⟩ and ≤, ≤_{pr}^α are transitive and reflexive (binary) relations on Q satisfying for each α < λ:
(a) ≤_{pr}^α ⊆ ≤,
(b) (Q, ≤) is strategically (<λ)-complete and (Q, ≤_{pr}^α) is strategically (≤κ)-complete for all infinite cardinals κ < λ.

Note that unlike in Definition 17 of Part 2, in semi-purity we do not require any kind of pure decidability.

Complete semi-purity

Until we state otherwise, we assume that λ is strongly inaccessible and *D* is a normal filter on λ

Definition 1

A forcing notion with λ -complete semi- purity is a triple $(\mathbb{Q}, \leq, \bar{\leq}_{pr})$ such that $\bar{\leq}_{pr} = \langle \leq_{pr}^{\alpha} : \alpha < \lambda \rangle$ and \leq, \leq_{pr}^{α} are transitive and reflexive (binary) relations on \mathbb{Q} satisfying for each $\alpha < \lambda$: (a) $\leq_{pr}^{\alpha} \subseteq \leq$, (b) (\mathbb{Q}, \leq) is strategically $(<\lambda)$ -complete and $(\mathbb{Q}, \leq_{pr}^{\alpha})$ is strategically $(\leq \kappa)$ -complete for all infinite cardinals $\kappa < \lambda$.

Note that unlike in Definition 17 of Part 2, in semi-purity we do not require any kind of pure decidability.

Complete semi-purity

Until we state otherwise, we assume that λ is strongly inaccessible and *D* is a normal filter on λ

Definition 1

A forcing notion with λ -complete semi- purity is a triple $(\mathbb{Q}, \leq, \bar{\leq}_{pr})$ such that $\bar{\leq}_{pr} = \langle \leq_{pr}^{\alpha} : \alpha < \lambda \rangle$ and \leq, \leq_{pr}^{α} are transitive and reflexive (binary) relations on \mathbb{Q} satisfying for each $\alpha < \lambda$: (a) $\leq_{pr}^{\alpha} \subseteq \leq$, (b) (\mathbb{Q}, \leq) is strategically $(<\lambda)$ -complete and $(\mathbb{Q}, \leq_{pr}^{\alpha})$ is strategically $(\leq \kappa)$ -complete for all infinite cardinals $\kappa < \lambda$.

Note that unlike in Definition 17 of Part 2, in semi-purity we do not require any kind of pure decidability.

Assume that $(\mathbb{Q}, \leq, \leq_{pr})$ is forcing notion with λ -complete semi-purity. Let $\bar{q} = \langle q_{\alpha,\eta} : \alpha < \lambda \& \eta \in {}^{\alpha}\alpha \rangle \subseteq \mathbb{Q}$ and let $p \in \mathbb{Q}$.

We define a game $\Im_{\lambda}^{aux}(p, \bar{q}, \mathbb{Q}, \leq, \leq_{pr}, D)$ between two players, COM and INC as follows. A play of $\Im_{\lambda}^{aux}(p, \bar{q}, \mathbb{Q}, \leq, \leq_{pr}, D)$ lasts λ steps during which the players choose successive terms of a sequence $\langle (r_{\alpha}, A_{\alpha}, \eta_{\alpha}, r'_{\alpha}) : \alpha < \lambda \rangle$ so that:

(a)
$$r_{\alpha}, r'_{\alpha} \in \mathbb{Q}, A_{\alpha} \in D, \eta_{\alpha} \in {}^{\alpha}\lambda$$
 and for $\alpha < \beta < \lambda$:

 $p = r_0 \le r_\alpha \le r'_\alpha \le r_\beta$ and $A_\beta \subseteq A_\alpha$ and $\eta_\alpha \lhd \eta_\beta$,

Assume that $(\mathbb{Q}, \leq, \leq_{pr})$ is forcing notion with λ -complete semi-purity. Let $\bar{q} = \langle q_{\alpha,\eta} : \alpha < \lambda \& \eta \in {}^{\alpha}\alpha \rangle \subseteq \mathbb{Q}$ and let $p \in \mathbb{Q}$.

We define a game $\partial_{\lambda}^{aux}(p, \bar{q}, \mathbb{Q}, \leq, \bar{\leq}_{pr}, D)$ between two players, COM and INC as follows. A play of $\partial_{\lambda}^{aux}(p, \bar{q}, \mathbb{Q}, \leq, \bar{\leq}_{pr}, D)$ lasts λ steps during which the players choose successive terms of a sequence $\langle (r_{\alpha}, A_{\alpha}, \eta_{\alpha}, r'_{\alpha}) : \alpha < \lambda \rangle$ so that:

(a)
$$r_{\alpha}, r'_{\alpha} \in \mathbb{Q}, A_{\alpha} \in D, \eta_{\alpha} \in {}^{\alpha}\lambda$$
 and for $\alpha < \beta < \lambda$:

 $p = r_0 \le r_\alpha \le r'_\alpha \le r_\beta$ and $A_\beta \subseteq A_\alpha$ and $\eta_\alpha \triangleleft \eta_\beta$,

Assume that $(\mathbb{Q}, \leq, \bar{\leq}_{pr})$ is forcing notion with λ -complete semi-purity. Let $\bar{q} = \langle q_{\alpha,\eta} : \alpha < \lambda \& \eta \in {}^{\alpha}\alpha \rangle \subseteq \mathbb{Q}$ and let $p \in \mathbb{Q}$.

We define a game $\Im_{\lambda}^{aux}(p, \bar{q}, \mathbb{Q}, \leq, \bar{\leq}_{pr}, D)$ between two players, COM and INC as follows. A play of $\Im_{\lambda}^{aux}(p, \bar{q}, \mathbb{Q}, \leq, \bar{\leq}_{pr}, D)$ lasts λ steps during which the players choose successive terms of a sequence $\langle (r_{\alpha}, A_{\alpha}, \eta_{\alpha}, r'_{\alpha}) : \alpha < \lambda \rangle$ so that:

(a)
$$r_{\alpha}, r'_{\alpha} \in \mathbb{Q}, A_{\alpha} \in D, \eta_{\alpha} \in {}^{\alpha}\lambda$$
 and for $\alpha < \beta < \lambda$:

 $p = r_0 \le r_\alpha \le r'_\alpha \le r_\beta$ and $A_\beta \subseteq A_\alpha$ and $\eta_\alpha \lhd \eta_\beta$,

Assume that $(\mathbb{Q}, \leq, \bar{\leq}_{pr})$ is forcing notion with λ -complete semi-purity. Let $\bar{q} = \langle q_{\alpha,\eta} : \alpha < \lambda \& \eta \in {}^{\alpha}\alpha \rangle \subseteq \mathbb{Q}$ and let $p \in \mathbb{Q}$.

We define a game $\partial_{\lambda}^{aux}(p, \bar{q}, \mathbb{Q}, \leq, \bar{\leq}_{pr}, D)$ between two players, COM and INC as follows. A play of $\partial_{\lambda}^{aux}(p, \bar{q}, \mathbb{Q}, \leq, \bar{\leq}_{pr}, D)$ lasts λ steps during which the players choose successive terms of a sequence $\langle (r_{\alpha}, A_{\alpha}, \eta_{\alpha}, r'_{\alpha}) : \alpha < \lambda \rangle$ so that:

(a)
$$r_{\alpha}, r'_{\alpha} \in \mathbb{Q}, A_{\alpha} \in D, \eta_{\alpha} \in {}^{\alpha}\lambda$$
 and for $\alpha < \beta < \lambda$:

 $p = r_0 \le r_\alpha \le r'_\alpha \le r_\beta$ and $A_\beta \subseteq A_\alpha$ and $\eta_\alpha \triangleleft \eta_\beta$,

Assume that $(\mathbb{Q}, \leq, \bar{\leq}_{pr})$ is forcing notion with λ -complete semi-purity. Let $\bar{q} = \langle q_{\alpha,\eta} : \alpha < \lambda \& \eta \in {}^{\alpha}\alpha \rangle \subseteq \mathbb{Q}$ and let $p \in \mathbb{Q}$.

We define a game $\partial_{\lambda}^{aux}(p, \bar{q}, \mathbb{Q}, \leq, \bar{\leq}_{pr}, D)$ between two players, COM and INC as follows. A play of $\partial_{\lambda}^{aux}(p, \bar{q}, \mathbb{Q}, \leq, \bar{\leq}_{pr}, D)$ lasts λ steps during which the players choose successive terms of a sequence $\langle (r_{\alpha}, A_{\alpha}, \eta_{\alpha}, r'_{\alpha}) : \alpha < \lambda \rangle$ so that:

(a)
$$r_{\alpha}, r'_{\alpha} \in \mathbb{Q}, A_{\alpha} \in D, \eta_{\alpha} \in {}^{\alpha}\lambda$$
 and for $\alpha < \beta < \lambda$:

 $p = r_0 \leq r_{\alpha} \leq r'_{\alpha} \leq r_{\beta}$ and $A_{\beta} \subseteq A_{\alpha}$ and $\eta_{\alpha} \triangleleft \eta_{\beta}$,

At the end, COM wins the play $\langle (\mathbf{r}_{\alpha}, \mathbf{A}_{\alpha}, \eta_{\alpha}, \mathbf{r}'_{\alpha}) : \alpha < \lambda \rangle$ if and only if both players had always legal moves (so the play really lasted λ steps) and

(
$$\odot$$
) if $\gamma \in \triangle_{\alpha < \lambda} A_{\alpha}$ is limit, then $\eta_{\gamma} \in {}^{\gamma}\gamma$ and $q_{\gamma,\eta_{\gamma}} \leq_{\mathrm{pr}}^{\gamma} r_{\gamma}$.

If COM has a winning strategy in $\Im_{\lambda}^{aux}(p, \bar{q}, \mathbb{Q}, \leq, \leq_{pr}, D)$ then we say that *the condition p is aux-generic over* \bar{q}, D .

At the end, COM wins the play $\langle (\mathbf{r}_{\alpha}, \mathbf{A}_{\alpha}, \eta_{\alpha}, \mathbf{r}'_{\alpha}) : \alpha < \lambda \rangle$ if and only if both players had always legal moves (so the play really lasted λ steps) and

$$(\odot) \text{ if } \gamma \in \mathop{\bigtriangleup}_{\alpha < \lambda} A_{\alpha} \text{ is limit, then } \eta_{\gamma} \in {}^{\gamma}\gamma \text{ and } q_{\gamma,\eta_{\gamma}} \leq_{\mathrm{pr}}^{\gamma} r_{\gamma}.$$

If COM has a winning strategy in $\partial_{\lambda}^{aux}(p, \bar{q}, \mathbb{Q}, \leq, \bar{\leq}_{pr}, D)$ then we say that *the condition p is aux-generic over* \bar{q}, D .

Main Purity Game

A game $\Im_{\lambda}^{\text{main}}(p, \mathbb{Q}, \leq, \leq_{\text{pr}}, D)$ between two players, Generic and Antigeneric, is defined as follows. A play of the game lasts λ steps during which the players construct a sequence $\langle \bar{p}^{\alpha}, \bar{q}^{\alpha} : \alpha < \lambda \rangle$. At stage $\alpha < \lambda$ of the play,

- first Generic chooses a system p
 ^α = ⟨p_{α,η} : η ∈ ^αα⟩ of pairwise incompatible conditions from Q.
- Then Antigeneric answers by picking a system $\bar{q}^{\alpha} = \langle q_{\alpha,\eta} : \eta \in {}^{\alpha}\alpha \rangle$ of conditions from \mathbb{Q} satisfying

$$p_{\alpha,\eta} \leq_{\mathrm{pr}}^{\alpha} q_{\alpha,\eta}$$
 for all $\eta \in {}^{\alpha}\alpha$.

At the end, Generic wins the play $\langle \bar{p}^{\alpha}, \bar{q}^{\alpha} : \alpha < \lambda \rangle$ if and only if, letting $\bar{q} = \langle q_{\alpha,\eta} : \alpha < \lambda \& \eta \in {}^{\alpha}\alpha \rangle$,

A game $\Im_{\lambda}^{\text{main}}(p, \mathbb{Q}, \leq, \leq_{\text{pr}}, D)$ between two players, Generic and Antigeneric, is defined as follows. A play of the game lasts λ steps during which the players construct a sequence $\langle \bar{p}^{\alpha}, \bar{q}^{\alpha} : \alpha < \lambda \rangle$. At stage $\alpha < \lambda$ of the play,

- first Generic chooses a system p
 <sup>
 ^α = ⟨p_{α,η} : η ∈ ^αα⟩ of pairwise incompatible conditions from Q.
 </sup>
- Then Antigeneric answers by picking a system $\bar{q}^{\alpha} = \langle q_{\alpha,\eta} : \eta \in {}^{\alpha}\alpha \rangle$ of conditions from \mathbb{Q} satisfying

$$p_{\alpha,\eta} \leq_{\mathrm{pr}}^{\alpha} q_{\alpha,\eta}$$
 for all $\eta \in {}^{\alpha}\alpha$.

At the end, Generic wins the play $\langle \bar{p}^{\alpha}, \bar{q}^{\alpha} : \alpha < \lambda \rangle$ if and only if, letting $\bar{q} = \langle q_{\alpha,\eta} : \alpha < \lambda \& \eta \in {}^{\alpha}\alpha \rangle$,

A game $\Im_{\lambda}^{\text{main}}(p, \mathbb{Q}, \leq, \leq_{\text{pr}}, D)$ between two players, Generic and Antigeneric, is defined as follows. A play of the game lasts λ steps during which the players construct a sequence $\langle \bar{p}^{\alpha}, \bar{q}^{\alpha} : \alpha < \lambda \rangle$. At stage $\alpha < \lambda$ of the play,

- first Generic chooses a system p
 <sup>
 ^α = ⟨p_{α,η} : η ∈ ^αα⟩ of pairwise incompatible conditions from Q.
 </sup>
- Then Antigeneric answers by picking a system $\bar{q}^{\alpha} = \langle q_{\alpha,\eta} : \eta \in {}^{\alpha}\alpha \rangle$ of conditions from \mathbb{Q} satisfying

$$p_{\alpha,\eta} \leq_{\mathrm{pr}}^{\alpha} q_{\alpha,\eta} \qquad ext{for all } \eta \in {}^{\alpha}\alpha.$$

At the end, Generic wins the play $\langle \bar{p}^{\alpha}, \bar{q}^{\alpha} : \alpha < \lambda \rangle$ if and only if, letting $\bar{q} = \langle q_{\alpha,\eta} : \alpha < \lambda \& \eta \in {}^{\alpha}\alpha \rangle$,

A game $\Im_{\lambda}^{\text{main}}(p, \mathbb{Q}, \leq, \leq_{\text{pr}}, D)$ between two players, Generic and Antigeneric, is defined as follows. A play of the game lasts λ steps during which the players construct a sequence $\langle \bar{p}^{\alpha}, \bar{q}^{\alpha} : \alpha < \lambda \rangle$. At stage $\alpha < \lambda$ of the play,

- first Generic chooses a system p
 <sup>
 ^α = ⟨p_{α,η} : η ∈ ^αα⟩ of pairwise incompatible conditions from Q.
 </sup>
- Then Antigeneric answers by picking a system $\bar{q}^{\alpha} = \langle q_{\alpha,\eta} : \eta \in {}^{\alpha}\alpha \rangle$ of conditions from \mathbb{Q} satisfying

$$p_{\alpha,\eta} \leq_{\mathrm{pr}}^{\alpha} q_{\alpha,\eta} \qquad \text{for all } \eta \in {}^{\alpha}\alpha.$$

At the end, Generic wins the play $\langle \bar{p}^{\alpha}, \bar{q}^{\alpha} : \alpha < \lambda \rangle$ if and only if, letting $\bar{q} = \langle q_{\alpha,\eta} : \alpha < \lambda \& \eta \in {}^{\alpha}\alpha \rangle$,

A forcing notion \mathbb{Q} is λ -semi-purely proper over the filter D if for some sequence \leq_{pr} of binary relations on \mathbb{Q} ,

(Q, ≤, ≤_{pr}) is a forcing with the λ–complete semi-purity and
 for every p ∈ Q Generic has a winning strategy in ∂_λ^{main}(p, Q, ≤, ≤_{pr}, D).

Proposition 3

A forcing notion \mathbb{Q} is λ -semi-purely proper over the filter D if for some sequence \leq_{pr} of binary relations on \mathbb{Q} ,

• $(\mathbb{Q}, \leq, \bar{\leq}_{pr})$ is a forcing with the λ -complete semi-purity and

• for every $p \in \mathbb{Q}$ Generic has a winning strategy in $\partial_{\lambda}^{\text{main}}(p, \mathbb{Q}, \leq, \leq_{\text{pr}}, D).$

Proposition 3

A forcing notion \mathbb{Q} is λ -semi-purely proper over the filter D if for some sequence \leq_{pr} of binary relations on \mathbb{Q} ,

- $(\mathbb{Q}, \leq, \bar{\leq}_{pr})$ is a forcing with the λ -complete semi-purity and
- for every $p \in \mathbb{Q}$ Generic has a winning strategy in $\partial_{\lambda}^{\text{main}}(p, \mathbb{Q}, \leq, \overline{\leq}_{\text{pr}}, D).$

Proposition 3

A forcing notion \mathbb{Q} is λ -semi-purely proper over the filter D if for some sequence \leq_{pr} of binary relations on \mathbb{Q} ,

- $(\mathbb{Q}, \leq, \bar{\leq}_{pr})$ is a forcing with the λ -complete semi-purity and
- for every $p \in \mathbb{Q}$ Generic has a winning strategy in $\partial_{\lambda}^{\text{main}}(p, \mathbb{Q}, \leq, \overline{\leq}_{\text{pr}}, D).$

Proposition 3

Proof of the Proposition

Let \leq_{pr} be a sequence witnessing the semi-pure properness of \mathbb{Q} . Assume $N \prec (\mathcal{H}(\chi), \in, <^*_{\chi})$ satisfies

 $^{<\lambda}N \subseteq N, |N| = \lambda$ and $(\mathbb{Q}, \leq, \leq_{\mathrm{pr}}), D \ldots \in N.$

Let $p \in N \cap \mathbb{Q}$. Fix a winning strategy $\mathbf{st} \in N$ of Generic in $\partial_{\lambda}^{\text{main}}(p, \mathbb{Q}, \leq, \bar{\leq}_{\text{pr}}, D)$ and pick a list $\langle \underline{\tau}_{\alpha} : \alpha < \lambda \rangle$ of all \mathbb{Q} -names for ordinals from N.

Consider a play of $\partial_{\lambda}^{\text{main}}(p, \mathbb{Q}, \leq, \leq_{\text{pr}}, D)$ in which Generic uses **st** and Antigeneric chooses his answers as follows. At stage $\alpha < \lambda$ of the play, after Generic played $\bar{p}^{\alpha} = \langle p_{\alpha,\eta} : \eta \in {}^{\alpha}\alpha \rangle$, Antigeneric picks $\bar{q}^{\alpha} = \langle q_{\alpha,\eta} : \eta \in {}^{\alpha}\alpha \rangle \in N$ such that for $\eta \in {}^{\alpha}\alpha$:

 $(*)_{\eta} \ p_{lpha,\eta} \leq^{lpha}_{\mathrm{pr}} q_{lpha,\eta},$

 $(**)_{\eta}$ if $\beta < \alpha$ and there is a condition $q \alpha$ -purely stronger than $q_{\alpha,\eta}$ and forcing a value to \mathcal{I}_{β} , then $q_{\alpha,\eta}$ already forces a value to \mathcal{I}_{β} .

(Remember: $(\mathbb{Q}, \leq_{\mathrm{pr}}^{\alpha})$ is strategically $(\leq |\alpha|)$ -complete)

Proof of the Proposition

Let \leq_{pr} be a sequence witnessing the semi-pure properness of \mathbb{Q} . Assume $N \prec (\mathcal{H}(\chi), \in, <^*_{\chi})$ satisfies

 $^{<\lambda}N \subseteq N, |N| = \lambda$ and $(\mathbb{Q}, \leq, \leq_{\mathrm{pr}}), D \ldots \in N.$

Let $p \in N \cap \mathbb{Q}$. Fix a winning strategy $\mathbf{st} \in N$ of Generic in $\partial_{\lambda}^{\text{main}}(p, \mathbb{Q}, \leq, \bar{\leq}_{\text{pr}}, D)$ and pick a list $\langle \underline{\tau}_{\alpha} : \alpha < \lambda \rangle$ of all \mathbb{Q} -names for ordinals from N.

Consider a play of $\Im_{\lambda}^{\text{main}}(p, \mathbb{Q}, \leq, \leq_{\text{pr}}, D)$ in which Generic uses **st** and Antigeneric chooses his answers as follows. At stage $\alpha < \lambda$ of the play, after Generic played $\bar{p}^{\alpha} = \langle p_{\alpha,\eta} : \eta \in {}^{\alpha}\alpha \rangle$, Antigeneric picks $\bar{q}^{\alpha} = \langle q_{\alpha,\eta} : \eta \in {}^{\alpha}\alpha \rangle \in N$ such that for $\eta \in {}^{\alpha}\alpha$:

$$(*)_{\eta} \ p_{lpha,\eta} \leq^{lpha}_{\mathrm{pr}} q_{lpha,\eta},$$

 $(**)_{\eta}$ if $\beta < \alpha$ and there is a condition $q \alpha$ -purely stronger than $q_{\alpha,\eta}$ and forcing a value to τ_{β} , then $q_{\alpha,\eta}$ already forces a value to τ_{β} .

(Remember: $(\mathbb{Q}, \leq_{\mathrm{pr}}^{\alpha})$ is strategically $(\leq |\alpha|)$ -complete)

The play $\langle \bar{p}^{\alpha}, \bar{q}^{\alpha} : \alpha < \lambda \rangle$ is won by Generic, so there is a condition $p^* \ge p$ which is aux-generic over $\bar{q} = \langle q_{\alpha,\eta} : \alpha < \lambda \& \eta \in {}^{\alpha}\alpha \rangle$ and *D*.

We claim that p^* is (N, \mathbb{Q}) –generic.

Suppose towards contradiction that $p^+ \ge p^*$, $p^+ \Vdash_{\mathcal{I}\beta} = \zeta$, $\beta < \lambda$ but $\zeta \notin N$. Consider a play $\langle (r_\alpha, A_\alpha, \eta_\alpha, r'_\alpha) : \alpha < \lambda \rangle$ of $\exists_\lambda^{aux}(p^*, \bar{q}, \mathbb{Q}, \le, \le_{pr}, D)$ in which COM follows her winning strategy and INC plays:

• $r'_0 = p^+$, and for $\alpha > 0$ he lets $r'_{\alpha} = r_{\alpha}$.

Let $\gamma \in \triangle_{\alpha < \lambda} A_{\alpha}$ be a limit ordinal greater than β . Since the play was won by COM, we have $\eta_{\gamma} \in {\gamma \atop \gamma}$ and $q_{\gamma,\eta_{\gamma}} \leq_{\mathrm{pr}}^{\gamma} r_{\gamma}$. Since $p^+ \leq r_{\gamma}$, we know that $r_{\gamma} \Vdash_{\mathcal{I}\beta} = \zeta$ and hence (by $(**)_{\eta_{\gamma}}$) $q_{\gamma,\eta_{\gamma}} \Vdash_{\mathcal{I}\beta} = \zeta$. However, $q_{\gamma,\eta_{\gamma}} \in N$, contradicting $\zeta \notin N$.

The play $\langle \bar{p}^{\alpha}, \bar{q}^{\alpha} : \alpha < \lambda \rangle$ is won by Generic, so there is a condition $p^* \ge p$ which is aux-generic over $\bar{q} = \langle q_{\alpha,\eta} : \alpha < \lambda \& \eta \in {}^{\alpha}\alpha \rangle$ and *D*.

We claim that p^* is (N, \mathbb{Q}) –generic.

Suppose towards contradiction that $p^+ \ge p^*$, $p^+ \Vdash_{\mathcal{I}\beta} = \zeta$, $\beta < \lambda$ but $\zeta \notin N$. Consider a play $\langle (r_\alpha, A_\alpha, \eta_\alpha, r'_\alpha) : \alpha < \lambda \rangle$ of $\exists_\lambda^{aux}(p^*, \bar{q}, \mathbb{Q}, \le, \le_{pr}, D)$ in which COM follows her winning strategy and INC plays:

• $r'_0 = p^+$, and for $\alpha > 0$ he lets $r'_{\alpha} = r_{\alpha}$.

Let $\gamma \in \triangle_{\alpha < \lambda} A_{\alpha}$ be a limit ordinal greater than β . Since the play was won by COM, we have $\eta_{\gamma} \in {\gamma \atop \gamma}$ and $q_{\gamma,\eta_{\gamma}} \leq_{\mathrm{pr}}^{\gamma} r_{\gamma}$. Since $p^+ \leq r_{\gamma}$, we know that $r_{\gamma} \Vdash_{\mathcal{I}\beta} = \zeta$ and hence (by $(**)_{\eta_{\gamma}}$) $q_{\gamma,\eta_{\gamma}} \Vdash_{\mathcal{I}\beta} = \zeta$. However, $q_{\gamma,\eta_{\gamma}} \in N$, contradicting $\zeta \notin N$.

The play $\langle \bar{p}^{\alpha}, \bar{q}^{\alpha} : \alpha < \lambda \rangle$ is won by Generic, so there is a condition $p^* \ge p$ which is aux-generic over $\bar{q} = \langle q_{\alpha,\eta} : \alpha < \lambda \& \eta \in {}^{\alpha}\alpha \rangle$ and *D*.

We claim that p^* is (N, \mathbb{Q}) –generic.

Suppose towards contradiction that $p^+ \ge p^*$, $p^+ \Vdash_{\mathcal{I}\beta} = \zeta$, $\beta < \lambda$ but $\zeta \notin N$. Consider a play $\langle (r_\alpha, A_\alpha, \eta_\alpha, r'_\alpha) : \alpha < \lambda \rangle$ of $\supseteq_{\lambda}^{aux}(p^*, \bar{q}, \mathbb{Q}, \le, \le_{pr}, D)$ in which COM follows her winning strategy and INC plays:

• $r'_0 = p^+$, and for $\alpha > 0$ he lets $r'_{\alpha} = r_{\alpha}$.

Let $\gamma \in \triangle_{\alpha < \lambda} A_{\alpha}$ be a limit ordinal greater than β . Since the play was won by COM, we have $\eta_{\gamma} \in {}^{\gamma}_{\gamma}$ and $q_{\gamma,\eta_{\gamma}} \leq^{\gamma}_{\mathrm{pr}} r_{\gamma}$. Since $p^+ \leq r_{\gamma}$, we know that $r_{\gamma} \Vdash_{\mathcal{I}\beta} = \zeta$ and hence (by $(**)_{\eta_{\gamma}}$) $q_{\gamma,\eta_{\gamma}} \Vdash_{\mathcal{I}\beta} = \zeta$. However, $q_{\gamma,\eta_{\gamma}} \in N$, contradicting $\zeta \notin N$.

Theorem 4 ([RoSh:942, Thm 2.7])

Assume that λ is a strongly inaccessible cardinal and D is a normal filter on λ . Let $\overline{\mathbb{Q}} = \langle \mathbb{P}_{\xi}, \mathbb{Q}_{\xi} : \xi < \gamma \rangle$ be a λ -support iteration such that for every $\xi < \gamma$:

$$\Vdash_{\mathbb{P}_{\xi}}$$
 " \mathbb{Q}_{ξ} is λ -semi-purely proper over $D^{\mathbf{V}^{\mathbb{P}_{\xi}}}$,

(where $D^{\mathbf{V}^{\mathbb{F}_{\xi}}}$ is the normal filter on λ generated in $\mathbf{V}^{\mathbb{P}_{\xi}}$ by D).

Then $\mathbb{P}_{\gamma} = \lim(\bar{\mathbb{Q}})$ is λ -proper in the standard sense.

Proof.

Somewhat like Proposition 3 plus trees of conditions plus stuff...

Theorem 4 ([RoSh:942, Thm 2.7])

Assume that λ is a strongly inaccessible cardinal and D is a normal filter on λ . Let $\overline{\mathbb{Q}} = \langle \mathbb{P}_{\xi}, \mathbb{Q}_{\xi} : \xi < \gamma \rangle$ be a λ -support iteration such that for every $\xi < \gamma$:

$$\Vdash_{\mathbb{P}_{\xi}}$$
 " \mathbb{Q}_{ξ} is λ -semi-purely proper over $D^{\mathbf{V}^{\mathbb{P}_{\xi}}}$

(where $D^{\mathbf{V}^{\mathbb{F}_{\xi}}}$ is the normal filter on λ generated in $\mathbf{V}^{\mathbb{P}_{\xi}}$ by D).

Then $\mathbb{P}_{\gamma} = \lim(\bar{\mathbb{Q}})$ is λ -proper in the standard sense.

Proof.

Somewhat like Proposition 3 plus trees of conditions plus stuff...

Proposition 5

The forcing notions $\mathbb{Q}^{\ell,\overline{E}}$ (for $\ell = 2,3,4$) and their bounded relatives $\mathbb{Q}^{\ell}_{\varphi,\overline{F}}$ (for $\ell = 2,3,4$) are λ -semi purely proper.

You may notice the absence of $\mathbb{Q}_E^{1,E}$ and this may worry you if *E* is the club filter on λ (as this case was not covered by part 2). It is a strange case though.

Proposition 6 ([RoSh:942, Section 4])

Let E, E_t be club filters on λ .

- It is consistent that $\mathbb{Q}^{2,\overline{E}}$ is a dense subset of $\mathbb{Q}_{F}^{1,\overline{E}}$.
- It is consistent that the complete Boolean algebras RO(Q^{2,Ē}) and RO(Q^{1,Ē}_E) are not isomorphic.

Proposition 5

The forcing notions $\mathbb{Q}^{\ell,\overline{E}}$ (for $\ell = 2,3,4$) and their bounded relatives $\mathbb{Q}^{\ell}_{\omega,\overline{F}}$ (for $\ell = 2,3,4$) are λ -semi purely proper.

You may notice the absence of $\mathbb{Q}_{E}^{1,\overline{E}}$ and this may worry you if *E* is the club filter on λ (as this case was not covered by part 2). It is a strange case though.

Proposition 6 ([RoSh:942, Section 4])

Let E, E_t be club filters on λ .

-] It is consistent that $\mathbb{Q}^{2,ar{E}}$ is a dense subset of $\mathbb{Q}_F^{1,ar{E}}$.
- It is consistent that the complete Boolean algebras RO(Q^{2,Ē}) and RO(Q^{1,Ē}_E) are not isomorphic.

Proposition 5

The forcing notions $\mathbb{Q}^{\ell,\overline{E}}$ (for $\ell = 2,3,4$) and their bounded relatives $\mathbb{Q}^{\ell}_{\omega,\overline{F}}$ (for $\ell = 2,3,4$) are λ -semi purely proper.

You may notice the absence of $\mathbb{Q}_{E}^{1,\overline{E}}$ and this may worry you if *E* is the club filter on λ (as this case was not covered by part 2). It is a strange case though.

Proposition 6 ([RoSh:942, Section 4])

Let E, E_t be club filters on λ .

- It is consistent that $\mathbb{Q}^{2,\overline{E}}$ is a dense subset of $\mathbb{Q}_{F}^{1,\overline{E}}$.
- 2 It is consistent that the complete Boolean algebras $\operatorname{RO}(\mathbb{Q}^{2,\overline{E}})$ and $\operatorname{RO}(\mathbb{Q}_E^{1,\overline{E}})$ are not isomorphic.

Diamonds are the best friends

For the rest of this talk we assume:

- λ is a regular uncountable cardinal, $\lambda^{<\lambda} = \lambda$.
- 2 *D* is a normal filter on λ .
- A set S ∈ D⁺ contains all successor ordinals below λ,
 0 ∉ S and λ \ S is unbounded in λ. For an ordinal γ < λ we set S[γ] = S \ {δ ≤ γ : δ is limit }.
- \mathcal{R} is the closure of $\lambda \setminus \mathcal{S}$ and $\bar{\gamma} = \langle \gamma_{\alpha} : \alpha < \lambda \rangle$ is the increasing enumeration of \mathcal{R} (so the sequence $\bar{\gamma}$ is increasing continuous, $\gamma_0 = 0$ and all other terms of $\bar{\gamma}$ are limit ordinals).
- **•** There exists a (D, S)-diamond, where

Definition 7

A sequence $\overline{f} = \langle f_{\delta} : \delta \in S \rangle$ is a (D, S)-diamond if $f_{\delta} \in {}^{\delta}\delta$ for $\delta \in S$ and $(\forall \eta \in {}^{\lambda}\lambda)(\{\delta \in S : f_{\delta} \lhd \eta\} \in D^+)$.

Let \mathbb{Q} be a forcing notion. A binary relation R^{pr} is called a λ -sequential purity on \mathbb{Q} whenever $\bar{r} R^{pr} r$ implies

(a) $\overline{r} = \langle r_{\alpha} : \alpha < \delta \rangle$ is a $\leq_{\mathbb{Q}}$ -increasing sequence of conditions from \mathbb{Q} of limit length $\delta < \lambda$, and

(b) $r \in \mathbb{Q}$ is an upper bound of \overline{r} (i.e., $r_{\alpha} \leq_{\mathbb{Q}} r$ for all $\alpha < \delta$).

If, additionally, the relation $R^{\rm pr}$ satisfies

(c) if $\bar{r} = \langle r_{\alpha} : \alpha < \delta \rangle R^{\text{pr}} s_{\beta}$ for $\beta < \xi, \xi < |\delta|^+$ and $s_{\beta} \leq s_{\gamma}$ for $\beta < \gamma < \xi$,

then there is a condition $oldsymbol{s} \in \mathbb{Q}$ stronger than all $oldsymbol{s}_eta$ (for

 $\beta < \xi$) and such that $\bar{r} R^{\rm pr} s$,

then we say that R^{pr} is a λ -sequential⁺ purity on \mathbb{Q} .

Let (\mathbb{Q}, \leq) be a strategically $(\langle \lambda \rangle)$ -complete forcing notion and R^{pr} be a λ -sequential purity on \mathbb{Q} .

Suppose that a model $N \prec (\mathcal{H}(\chi), \in, <^*_{\chi})$ is such that $|N| = \lambda$, ${}^{<\lambda}N \subseteq N$ and $\lambda, \mathbb{Q}, D, S, \ldots \in N$

(but note we do not demand $\textit{R}^{\rm pr} \in \textit{N}$)

and a function $h : \lambda \longrightarrow N$ is such that its range $\operatorname{Rng}(h)$ includes $\mathbb{Q} \cap N$. Also, let $\overline{\mathcal{I}} = \langle \mathcal{I}_{\alpha} : \alpha < \lambda \rangle$ list all dense open subsets of \mathbb{Q} belonging to N and let $\gamma < \lambda$.

We say that a sequence *f* = ⟨*f*_δ : δ ∈ S⟩ is a (D, S, h)-semi diamond for Q over N if *f*_δ ∈ ^δδ for δ ∈ S and

(*) for every $\leq_{\mathbb{Q}}$ -increasing sequence $\langle p_{\alpha} : \alpha < \lambda \rangle \subseteq \mathbb{Q} \cap N$ we have that $\{\delta \in S : (\forall \alpha < \delta)(h(f_{\delta}(\alpha)) = p_{\alpha})\} \in D^+$.

Below, let \overline{f} be a (D, S, h)-semi diamond for \mathbb{Q} over N.

- An (N, h, Q, R^{pr}, f, Ī)-candidate is a sequence q̄ = ⟨q_δ : δ ∈ S limit ⟩ of condition from N ∩ Q satisfying for each limit δ ∈ S:
 - (a) if $h \circ f_{\delta} = \langle h(f_{\delta}(\alpha)) : \alpha < \delta \rangle \subseteq \mathbb{Q} \cap N$ and it has an upper bound in \mathbb{Q} , then $h(f_{\delta}(\alpha)) \leq q_{\delta}$ for all $\alpha < \delta$, and
 - (b) if, moreover, $h \circ f_{\delta} \in \text{Dom}(R^{\text{pr}})$, then also $h \circ f_{\delta} R^{\text{pr}} q_{\delta}$, and
 - (c) if there is $q \in \bigcap \mathcal{I}_{\alpha}$ such that $h \circ f_{\delta} R^{\mathrm{pr}} q$, then also

$$_{\delta}\in igcap_{lpha \leq \delta}\mathcal{I}_{lpha}.$$

 $\alpha < \delta$

Nebraska

The Diamond Game

Let $\bar{q} = \langle q_{\delta} : \delta \in S \& \delta$ is limit \rangle be a candidate and $r \in \mathbb{Q}$. We define a game $\partial_{\gamma}^{S}(r, N, h, \mathbb{Q}, R^{\mathrm{pr}}, \bar{f}, \bar{q})$ of two players, *Generic* and *Antigeneric*, as follows. A play lasts $\leq \lambda$ moves and in the *i*th move the players try to choose conditions $r_{i}^{-}, r_{i} \in \mathbb{Q}$ and a set $C_{i} \in D$ so that

(a) $r \leq r_i$, and $r_i^- \in N$, and if $i \notin S[\gamma] \cap \mathcal{R}$ then $r_i^- \leq r_i$,

(b)
$$(\forall i < j < \lambda)(r_i \le r_j \& r_i^- \le r_j^-)$$
, and

(c) Generic chooses r_i^- , r_i , C_i if $i \in S[\gamma]$, and Antigeneric chooses r_i^- , r_i , C_i if $i \notin S[\gamma]$.

At the end Generic wins the play whenever both players always had legal moves (so the game lasted λ steps) and

(*) if $\delta \in S[\gamma] \cap \bigcap_{i < \delta} C_i$ is a limit ordinal and $h \circ f_{\delta}$ is an increasing sequence of conditions in \mathbb{Q} such that for all $\alpha < \delta$ we have $h(f_{\delta}(\alpha + 1)) = r_{\alpha+1}^{-}$, then $q_{\delta} \leq r_{\delta}$ and $h \circ f_{\delta} R^{\text{pr}} r_{\delta}$.

We say that a strategically $(<\lambda)$ -complete forcing notion \mathbb{Q} is *purely sequentially proper over* (D, S)-*semi diamonds* whenever the following condition (\odot) is satisfied.

- (•) Assume that χ is a large enough regular cardinal and $N \prec \mathcal{H}(\chi), |N| = \lambda, {}^{<\lambda}N \subseteq N \text{ and } \lambda, \mathbb{Q}, D, S, \ldots \in N.$ **Then** there exists a λ -sequential purity R^{pr} on \mathbb{Q} such that: for every ordinal $\gamma < \lambda$, a condition $p \in \mathbb{Q} \cap N$ and every $\overline{\mathcal{I}}, h, \overline{f}, \overline{q}$ satisfying
 - $\overline{\mathcal{I}} = \langle \mathcal{I}_{\alpha} : \alpha < \lambda \rangle$ lists all open dense subsets of \mathbb{Q} from *N*,
 - a function $h : \lambda \longrightarrow N$ is such that $\mathbb{Q} \cap N \subseteq \operatorname{Rng}(h)$, and
 - a sequence \overline{f} is a (D, S, h)-semi diamond for \mathbb{Q} , and
 - \bar{q} is an $(N, h, \mathbb{Q}, R^{\text{pr}}, \bar{f}, \bar{\mathcal{I}})$ -candidate,

we have that Generic has a winning strategy in the game $\partial_{\gamma}^{S}(r, N, h, \mathbb{Q}, R^{\text{pr}}, \overline{f}, \overline{q})$ for some condition $r \geq p$.

If the relation R^{pr} above can be required to be a λ -sequential⁺ purity, then we say that \mathbb{Q} is *purely sequentially*⁺ *proper over* (D, S)-semi diamonds.

We say that a strategically $(<\lambda)$ -complete forcing notion \mathbb{Q} is *purely sequentially proper over* (D, S)-*semi diamonds* whenever the following condition (\odot) is satisfied.

(\odot) Assume that χ is a large enough regular cardinal and $N \prec \mathcal{H}(\chi)$, $|N| = \lambda$, ${}^{<\lambda}N \subseteq N$ and λ , \mathbb{Q} , D, S, $\ldots \in N$. Then there exists a λ -sequential purity R^{pr} on \mathbb{Q} such that: for every ordinal $\gamma < \lambda$, a condition $p \in \mathbb{Q} \cap N$ and every $\overline{\mathcal{I}}$, h, \overline{f} , \overline{q} satisfying

- $\overline{\mathcal{I}} = \langle \mathcal{I}_{\alpha} : \alpha < \lambda \rangle$ lists all open dense subsets of \mathbb{Q} from *N*,
- a function $h : \lambda \longrightarrow N$ is such that $\mathbb{Q} \cap N \subseteq \operatorname{Rng}(h)$, and
- a sequence \overline{f} is a (D, S, h)-semi diamond for \mathbb{Q} , and

• \bar{q} is an $(N, h, \mathbb{Q}, R^{\text{pr}}, \bar{f}, \bar{\mathcal{I}})$ -candidate,

we have that Generic has a winning strategy in the game $\partial_{\gamma}^{S}(r, N, h, \mathbb{Q}, R^{\text{pr}}, \overline{f}, \overline{q})$ for some condition $r \geq p$.

If the relation R^{pr} above can be required to be a λ -sequential⁺ purity, then we say that \mathbb{Q} is *purely sequentially*⁺ *proper over* (D, S)-semi diamonds.

Definition 10

We say that a strategically $(<\lambda)$ -complete forcing notion \mathbb{Q} is *purely sequentially proper over* (D, S)-*semi diamonds* whenever the following condition (\odot) is satisfied.

(\odot) Assume that χ is a large enough regular cardinal and $N \prec \mathcal{H}(\chi)$, $|N| = \lambda$, ${}^{<\lambda}N \subseteq N$ and λ , \mathbb{Q} , D, S, $\ldots \in N$. **Then** there exists a λ -sequential purity R^{pr} on \mathbb{Q} such that: for every ordinal $\gamma < \lambda$, a condition $p \in \mathbb{Q} \cap N$ and every $\overline{\mathcal{I}}$, h, \overline{f} , \overline{q} satisfying

- $\bar{\mathcal{I}} = \langle \mathcal{I}_{\alpha} : \alpha < \lambda \rangle$ lists all open dense subsets of \mathbb{Q} from *N*,
- a function $h : \lambda \longrightarrow N$ is such that $\mathbb{Q} \cap N \subseteq \operatorname{Rng}(h)$, and
- a sequence \overline{f} is a (D, S, h)-semi diamond for \mathbb{Q} , and
- \bar{q} is an $(N, h, \mathbb{Q}, R^{\text{pr}}, \bar{f}, \bar{\mathcal{I}})$ -candidate,

we have that Generic has a winning strategy in the game $\Im_{\gamma}^{S}(r, N, h, \mathbb{Q}, R^{\mathrm{pr}}, \overline{f}, \overline{q})$ for some condition $r \geq p$.

If the relation R^{pr} above can be required to be a λ -sequential⁺ purity, then we say that \mathbb{Q} is *purely sequentially*⁺ *proper over* (D, S)-semi diamonds.

Definition 10

We say that a strategically $(<\lambda)$ -complete forcing notion \mathbb{Q} is *purely sequentially proper over* (D, S)-*semi diamonds* whenever the following condition (\odot) is satisfied.

(\odot) Assume that χ is a large enough regular cardinal and $N \prec \mathcal{H}(\chi)$, $|N| = \lambda$, ${}^{<\lambda}N \subseteq N$ and λ , \mathbb{Q} , D, S, $\ldots \in N$. **Then** there exists a λ -sequential purity R^{pr} on \mathbb{Q} such that: for every ordinal $\gamma < \lambda$, a condition $p \in \mathbb{Q} \cap N$ and every $\overline{\mathcal{I}}$, h, \overline{f} , \overline{q} satisfying

- $\bar{\mathcal{I}} = \langle \mathcal{I}_{\alpha} : \alpha < \lambda \rangle$ lists all open dense subsets of \mathbb{Q} from *N*,
- a function $h : \lambda \longrightarrow N$ is such that $\mathbb{Q} \cap N \subseteq \operatorname{Rng}(h)$, and
- a sequence \overline{f} is a (D, S, h)-semi diamond for \mathbb{Q} , and
- \bar{q} is an $(N, h, \mathbb{Q}, R^{\text{pr}}, \bar{f}, \bar{\mathcal{I}})$ -candidate,

we have that Generic has a winning strategy in the game $\Im_{\gamma}^{S}(r, N, h, \mathbb{Q}, R^{\mathrm{pr}}, \overline{f}, \overline{q})$ for some condition $r \geq p$.

If the relation R^{pr} above can be required to be a λ -sequential⁺ purity, then we say that \mathbb{Q} is *purely sequentially*⁺ *proper over* (D, S)-semi diamonds.

Proposition 11

If a forcing notion \mathbb{Q} is purely sequentially proper over (D, S)-semi diamonds and there exists a (D, S)-diamond, then \mathbb{Q} is λ -proper in the standard sense.

Proof Given *N* and $p \in \mathbb{Q} \cap N$.

Let \bar{q} be an $(N, h, \mathbb{Q}, R^{\text{pr}}, \bar{t}, \bar{\mathcal{I}})$ -candidate and $r \ge p$ be such that Generic has a winning strategy in the game

Suppose that $\mathcal{I} \in N$ is an open dense subset of \mathbb{Q} , say $\mathcal{I} = \mathcal{I}_{j_0}$ (where $\overline{\mathcal{I}} = \langle \mathcal{I}_i : i < \lambda \rangle$ lists all open dense subsets of \mathbb{Q} belonging to *N*). We want to argue that $\mathcal{I} \cap N$ is predense above *r*.

Suppose $r_0 \ge r$.

Proposition 11

If a forcing notion Q is purely sequentially proper over (D, S)-semi diamonds and there exists a (D, S)-diamond, then \mathbb{Q} is λ -proper in the standard sense.

Proof Given *N* and $p \in \mathbb{Q} \cap N$. Let \bar{q} be an $(N, h, \mathbb{Q}, R^{\text{pr}}, \bar{f}, \bar{\mathcal{I}})$ -candidate and r > p be such that Generic has a winning strategy in the game $\supseteq_{\gamma}^{\mathcal{S}}(r, N, h, \mathbb{Q}, R^{\mathrm{pr}}, \overline{f}, \overline{q}).$ Suppose that $\mathcal{I} \in N$ is an open dense subset of \mathbb{Q} , say $\mathcal{I} = \mathcal{I}_{i_0}$ (where $\overline{\mathcal{I}} = \langle \mathcal{I}_i : i < \lambda \rangle$ lists all open dense subsets of \mathbb{Q} belonging to *N*). We want to argue that $\mathcal{I} \cap N$ is predense above r.

Suppose $r_0 \ge r$.

Consider a play of $\partial_{\gamma}^{S}(r, N, h, \mathbb{Q}, R^{\text{pr}}, \overline{f}, \overline{q})$ in which Generic follows her winning strategy and Antigeneric plays as follows.

• At stage i = 0, Antigeneric sets $C_0 = \lambda$, $r_0^- = \emptyset_Q$ and r_0 is the one fixed above.

• At a stage $i \notin S[\gamma]$, i > 0, Antigeneric first picks any legal move C_i, r_i^-, r_i' and then "corrects" it by choosing a condition $r_i \ge r_i'$ so that $r_i \in \bigcap_{i \le i} \mathcal{I}_j$.

After the play is completed and a sequence $\langle C_i, r_i^-, r_i : i < \lambda \rangle$ is constructed, we know that Generic won, so:

(*) if $\delta \in S[\gamma] \cap \bigcap_{i < \delta} C_i$ is a limit ordinal and $h \circ f_{\delta}$ is an increasing sequence of conditions in \mathbb{Q} such that for all $\alpha < \delta$ we have $h(f_{\delta}(\alpha + 1)) = r_{\alpha+1}^{-}$, then $q_{\delta} \leq r_{\delta}$ and $h \circ f_{\delta} R^{\text{pr}} r_{\delta}$.

Since \overline{f} is a (D, S, h)-semi diamond for \mathbb{Q} over N, we know that

 $\{\delta \in \mathcal{S} : (\forall \alpha < \delta)(h(f_{\delta}(\alpha)) = r_{\alpha}^{-})\} \in D^{+}.$

Consider a play of $\partial_{\gamma}^{S}(r, N, h, \mathbb{Q}, R^{\text{pr}}, \overline{f}, \overline{q})$ in which Generic follows her winning strategy and Antigeneric plays as follows.

• At stage i = 0, Antigeneric sets $C_0 = \lambda$, $r_0^- = \emptyset_Q$ and r_0 is the one fixed above.

• At a stage $i \notin S[\gamma]$, i > 0, Antigeneric first picks any legal move C_i, r_i^-, r_i' and then "corrects" it by choosing a condition $r_i \ge r_i'$ so that $r_i \in \bigcap_{i \le i} \mathcal{I}_j$.

After the play is completed and a sequence $\langle C_i, r_i^-, r_i : i < \lambda \rangle$ is constructed, we know that Generic won, so:

(*) if $\delta \in S[\gamma] \cap \bigcap_{i < \delta} C_i$ is a limit ordinal and $h \circ f_{\delta}$ is an increasing sequence of conditions in \mathbb{Q} such that for all $\alpha < \delta$ we have $h(f_{\delta}(\alpha + 1)) = r_{\alpha+1}^{-}$, then $q_{\delta} \leq r_{\delta}$ and $h \circ f_{\delta} R^{\text{pr}} r_{\delta}$.

Since \overline{f} is a (D, S, h)-semi diamond for \mathbb{Q} over N, we know that

 $\{\delta \in \mathcal{S} : (\forall \alpha < \delta)(h(f_{\delta}(\alpha)) = r_{\alpha}^{-})\} \in D^{+}.$

Consider a play of $\partial_{\gamma}^{S}(r, N, h, \mathbb{Q}, R^{\text{pr}}, \overline{f}, \overline{q})$ in which Generic follows her winning strategy and Antigeneric plays as follows.

• At stage i = 0, Antigeneric sets $C_0 = \lambda$, $r_0^- = \emptyset_Q$ and r_0 is the one fixed above.

• At a stage $i \notin S[\gamma]$, i > 0, Antigeneric first picks any legal move C_i, r_i^-, r_i' and then "corrects" it by choosing a condition $r_i \ge r_i'$ so that $r_i \in \bigcap_{j < i} \mathcal{I}_j$.

After the play is completed and a sequence $\langle C_i, r_i^-, r_i : i < \lambda \rangle$ is constructed, we know that Generic won, so:

(*) if $\delta \in S[\gamma] \cap \bigcap_{i < \delta} C_i$ is a limit ordinal and $h \circ f_{\delta}$ is an increasing sequence of conditions in \mathbb{Q} such that for all $\alpha < \delta$ we have $h(f_{\delta}(\alpha + 1)) = r_{\alpha+1}^{-}$, then $q_{\delta} \leq r_{\delta}$ and $h \circ f_{\delta} R^{\text{pr}} r_{\delta}$.

Since \overline{f} is a (D, S, h)-semi diamond for \mathbb{Q} over N, we know that

$$\{\delta \in \mathcal{S} : (\forall \alpha < \delta)(h(f_{\delta}(\alpha)) = r_{\alpha}^{-})\} \in D^{+}.$$

Pick a limit ordinal $\delta \in S[\gamma] \cap \bigtriangleup_{i < \lambda} C_i$ such that $\delta > j_0$, δ is a limit of elements of $\lambda \setminus S$ and $h \circ f_{\delta} = \langle r_{\alpha}^- : \alpha < \delta \rangle$. Then by (\circledast) we have that $q_{\delta} \leq r_{\delta}$ and $h \circ f_{\delta} R^{\text{pr}} r_{\delta}$. Moreover, since $r_{\alpha} \leq r_{\delta}$ for all $\alpha < \delta$ and since δ is a limit of points from $\lambda \setminus S$ we get $r_{\delta} \in \bigcap_{j < \delta} \mathcal{I}_j$. Therefore $q_{\delta} \in \bigcap_{j < \delta} \mathcal{I}_j$, so in particular $q_{\delta} \in \mathcal{I}_{j_0} \cap N$. But the condition r_{δ} is stronger than q_{δ} and it is also stronger than r_0 , so r_0 is compatible with q_{δ} .

Example 12

The following forcing notions are purely sequentially⁺ proper over (D, S)-semi diamonds:

• $\leq \lambda$ -strategically complete,

•
$$\mathbb{Q}^{\ell,E}$$
 for $\ell = 2, 3, 4$,

- $\mathbb{Q}^{\ell}\varphi, \bar{F}$ for $\ell = 2, 3, 4$ (if λ is inaccessible),
- the forcing \mathbb{Q}^* with $\mathcal{S}' = \lambda \setminus \mathcal{S}$ and many other.

Theorem 13 ([RoSh 1001, Thm 4.1])

Let $\overline{\mathbb{Q}} = \langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha} : \alpha < \zeta^* \rangle$ be a λ -support iteration such that for each $\alpha < \zeta^*$

$$\vdash_{\mathbb{P}_{\alpha}}$$
 " \mathbb{Q}_{α} is purely sequentially⁺ proper
over (D, S)-semi diamonds ".

Then

- P_{ζ*} = lim(Q
 [¯]) is purely sequentially proper over (D, S)-semi diamonds.
- 2 If, additionally, for each $\alpha < \zeta^*$

$$\Vdash_{\mathbb{P}_{lpha}}$$
 " \mathbb{Q}_{lpha} is (< λ)–complete "

then \mathbb{P}_{ζ^*} is purely sequentially⁺ proper over (D, S)-semi diamonds.

The proof of the theorem does not use trees of conditions at all (they are inconvenient for non-inaccessible case).

We play there games on more and more coordinates; at a crucial stage we use RS-conditions:

RS–condition in \mathbb{P}_{ζ^*} is a pair (p, w) such that $w \in [(\zeta^* + 1)]^{<\lambda}$ is a closed set, $0, \zeta^* \in w, p$ is a function with domain $\text{Dom}(p) \subseteq \zeta^*$, and

(\otimes) for every two successive members $\varepsilon' < \varepsilon''$ of the set w, $p \upharpoonright [\varepsilon', \varepsilon'')$ is a $\mathbb{P}_{\varepsilon'}$ -name of an element of $\mathbb{P}_{\varepsilon''}$ whose support is included in the interval $[\varepsilon', \varepsilon'')$.

Thank you for your attention during this tutorial!

[RoSh:942] Andrzej Rosłanowski and Saharon Shelah. More about λ -support iterations of ($<\lambda$)-complete forcing notions. *Archive for Mathematical Logic*, **52**:603–629, 2013. arxiv:1105.6049.

[RoSh 1001] Andrzej Rosłanowski and Saharon Shelah. The last forcing standing with diamonds. *Fundamenta Mathematicae*, **submitted**. arxiv:1406.4217.

